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FOREWORD

This final report is submitted in fulfillment of CDRL CLIN 0001, Data Item A001, Title:
Scientific and Technical Reports of a Small business Technology Transfer (STTR) Phase II
contract No. F33615-96-C-3217 entitled, “Development of the Aerodynamic/Aeroservoelastic
Modules in ASTROS,” covering the performance period from 24 September 1996 to 24
September 1998.

This work is the second phase of a continuing two-phase STTR contract supported by
AFRL/Wright-Patterson. The first phase STTR contract No. F33615-95-C-3219 entitled,
“Enhancement of the Aeroservoelastic Capability in ASTROS,” was completed in May 1996
and published as WL-TR-96-3119.

Both STTR Phase I and Phase II contracts are performed by the same ZONA Team in which
ZONA Technology, Inc. is the prime contractor, whereby the team members include: the
University of Oklahoma (OU), Universal Analytics, Inc. (UAI), and Technion (I.T.T.).

This final report consists of eight volumes, these are:

ASTROS*

Volume I - ZAERO User’s Manual

Volume II - ZAERO Programmer’s Manual

VolumeIIT - ZAERO Application Manual

VolumeIV - ZAERO Theoretical Manual

ASTROServo

Volume I - Aeroservoelastic Discipline in ASTROS, User’s Manual
Volume IT - Aeroservoelastic Discipline in ASTROS, Programmer’s Manual
Volume IIT - Aeroservoelastic Discipline in ASTROS, Application Manual
VolumeIV - Aeroservoelastic Discipline in ASTROS, Theoretical Manual

This document (Volume IV) is the Theoretical Manual of the Aeroservoelastic (ASE)
interaction module developed to facilitate ASE analysis and the application of ASE stability
and response constraints within ASTROS.

At AFRIL/Wright-Patterson, Captain Gerald Andersen was the contract monitor and Dr. V. B.
Venkayya was the initiator of the whole STTR effort. The technical advice and assistance
received from Mr. Doug Niell of the MacNeal Schwendler Corporation, Dr. V. B. Venkayya
and others from AFRL during the course of the present phase on the development of
ASTROS* are gratefully acknowledged.
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Chapter 1

Introduction

The common approach for formulating the dynamic equations of motion of aeroelastic sys-
tems uses normal modes of the structure as generalized coordinates. Control-surface de-
flection modes may be added when the interaction with the control system is considered.
Complex gust velocity modes may also be added to analyze the response of the structural
and control systems to continuous gust. The unsteady aerodynamic force coeflicients are
defined with respect to these modes.

The unsteady aerodynamic codes in ASTROS assume that the structure oscillates har-
monically. Transcendental unsteady aerodynamic matrices are calculated for various reduced
frequency values. The flutter and gust-response modules in ASTROS use second-order for-
mulations for stability solutions, frequency response, and frequency-domain control synthesis.

The application of various modern control design techniques, simulations and optimiza-
tion procedures require the aeroservoelastic equations of motion to be transformed into a
first-order, time-domain (state-space) form. This transformation requires the aerodynamic
matrices to be approximated by rational functions (ratio of polynomials) in the Laplace do-
main. The order of the resulting state-space model is a function of the number of selected
modes, the number of aerodynamic approximation roots, and the approximation formula.
The main considerations in constructing the model are its size (which affects the efficiency

of subsequent analyses), its accuracy, and the model construction efforts.
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Most commonly used rational aerodynamic approximation methods are variations of ei-
ther Roger’s classic approximation [1], which is based on term-by-term least-square fits with
common denominator roots, or the minimum-state (MS) method of Karpel [2, 3] which is
based on a more general approximation function with coupling between terms. Consequently,
the MS procedure requires computationally heavier, iterative, nonlinear least-square solu-
tions. Recent developments of the MS method [4-8] improved the accuracy, flexibility and
computational efficiency of the MS scheme. The number of aerodynamic states added by
the MS method in realistic aeroelastic design models is typically 6-8 times smaller than
those added by Roger’s approximation with the same level of model accuracy in subsequent
analyses. This makes the MS method very attractive in repetitive aeroelastic optimization
studies which are based on modes of a baseline structure, and in cases which involve control

synthesis.




Chapter 2

Generalized Matrices

The modal approach to structural optimization is based on using a set of low-frequency
normal modes of the baseline structure as a fixed set of generalized coordinates throughout
the entire optimization process, or at least for a major optimization cycle composed of
several design steps. The implementation of the modal approach in ASTROS required a
slight modification of this approach. Instead of keeping the modal coordinates fixed, they
are changed in each design step, but the new set of modal coordinates is assumed to be a
linear combination of the baseline set. Mathematically, there is no difference between the
two approaches.

It is currently assumed that the model does not include extra points, such that the h-set
and i-set are identical. If extra points would exist, the formulation below would apply to the
12 blocks of the dynamic matrices only, with the other blocks remain unchanged during the

design process. We also assume here that the contributions of the design variables to the

stiffness and mass matrices are linear.




2.1 The Modal Assumption

The set of n; calculated baseline modes [¢,;], defined in the a-set structural coordinates,

satisfy the eigenvalue problem

[KM] [¢ai] = [Maa] [¢ai] [Q] (21)

where [Q] is a diagonal matrix of the n; eigenvalues. If static Guyan reduction is applied,

the modes can be recovered to the f-set by

[61:] = [ GI,, } [¢as] (2.2)

Recovery of single- and multi-point constrained displacements leads to the g- set normal
modes [¢g].

The basic assumption of the modal approach is that the structufal displacements during
structural response to external excitation can be adequately expressed as a linear combination

of the baseline modes:
{ua} = [¢ail{¢} (2.3)

where {u,} is the a-set structural displacement vector and {£} is the vectors of generalized

displacements.

2.2 Modal Mass and Stiffness Matrices

The discrete-coordinate g-set stiffness and mass matrices are assembled in the design loop
by adding the contributions of the ng, global design variables to the contribution of the
elements that are not subject to changes. The assembly equations, (5-43) and (5-44) of Ref.
9, when all the structural elements are linear with respect to the design variables, can be

written as
Ny
[Kgg) = [DKV]o + Z v;[DKV]; (2.4)

=1



where [DKV); is a regular linear contributions of the design variable v;. The mass matrix is
assembles by
Ndy

[My] = [DMV]o + Y vDMV} (2.5)

=1

The coefficient matrices in Eqgs. (2.4) and (2.5) are stored in the standard ASTROS data
base for subsequent sensitivity analyses.

The premultiplication of Eq. (2.4) by [#4:]7 and the postmultiplication by [¢,:] yield the
assembled generalized stiffness matrix

Ndy

where
[DGKV]; = [¢:]7[DKV]i[4,:] (2.7)

The rigid-body related portions of [Kj;] are zero. The premultiplication of Eq. (2.5) by [¢,:]T
and the postmultiplication by [@4], yield the generalized mass matrix

Ndy

[M;;] = [DGMV], + Z v;[DGMV]; (2.8)
where
[DGMV]; = [¢5:]" [DMV]i[¢,:] (2.9)

A major advantage of the modal approach is that we can modify the generalized stiffness
and mass matrices, due to design changes, and repeat the analysis without returning to the
large-size finite-element model. When all the design variables are at their baseline values v,
both [Kj;] and [M;;] are diagonal. They are generally full in the modified structure (except
for the rigid-body rows and columns in [Kj;] which remain zero).

Denoting these baseline matrices by subscript b, we can rewrite Eqs. (2.6) and (2.8) as

nay

[K,,] = [K,‘,']b + Z(v,— — 'vbi)[DGKV],' (210)

=1




and

[Mi] = [Mils + 3 (vs — vs)[DGMV], (2.11)

=1

Aeroservoelastic analysis with moving control surfaces requires the mass coupling [M;,]

between the modal coordinates and the control surface deflection modes. For the baseline

structure,
(M = [DGMVC]o + fj v, [DGMVC]; (2.12)

where -
[DGMVC]; = [¢5]7 [DMV];[¢g.] (2.13)

where [¢,.] is the matrix of g-set control modes. Each control mode contains the kinematic
structural displacements due to a unit deflection of the associated control surface. The

modified mass coupling matrices is and

[M,'c] = [Mic]b + 'fi(v,' - 'Ub‘)[DGMVC], (214)

2.3 Normal Modes of the Modified Structure

The n; normal modes [cza,-] of the modified structure satisfy the eigenvalue equation
[Kda] [(;Eai] = [Maa][éai] [ﬁ] (215)

where [Q] is a diagonal matrix of the corresponding eigenvalues.
It is assumed that the normal modes of the modified structure are linear combinations

of the baseline modes [¢] at all the discrete coordinate set levels. At the a-set level it reads

[&ai] = [¢ai] [¢] (216)

where [3)] is a square non-singular matrix. The substitution of Eq. (2.16) in Eq. (2.15) and
premultiplication by [¢,;]7, yields the eigenvalue problem

[Kil[$] = [Ma][9][ (2.17)



where [Kj;] is defined in Eq. (2.6) and [M;] in Eq. (2.8). Eq. (2.17) can be solved for the

eigenvalues [Q2] and the eigenvectors [1], with [t] normalized such that

[]7[Mi][%] = [1] (2.18)

which yields
[ (K] = (€] (2.19)

To allow the formulation below to be applicable to the baseline structure as well as the
modified one, we define the baseline [¢)] as
The application of Eq. (2.17) to the j-th eigenvector, {4,}, its differentiation with respect
to a design variable v;, and premultiplication by {%,}7 yield the sensitivity of the j-th
eigenvalue,
09,
a’U,'

= {¢;}" (IDGKV}; — &;[DGMV};) {¢;} (2:20)

which can be used in calculating the frequenc.y constraint sensitivities. In order to apply
Eq. (2.20) and the generalized formulation below to the baseline structure as well as to the
modified ones, the baseline modes are normalized for unit generalized masses by Eq. (2.16)
with

[ls = [M:], (2.21)

2.4 Generalized Dynamic Matrices

2.4.1 Dynamic equation of motion

The generalized dynamic matrices are constructed in the h-set coordinates which are based
on the i-set modes plus extra (e-set) user-defined coordinates. As mention above, the formu-

lation below assumes that there are no extra degrees of freedom, such that n; = n;. However,




while i-set matrices are related in this document to the baseline modes [@ai], h-set matrices

are related to the modified modes

[¢ah] = [&ai] = [¢ai] [d)] (222)

where [@,;] is kept fixed and [¢as] varies during the optimization according to [¢] . Another
difference between the h-set and the i-set matrices is that, like in the standard ASTROS,
the h-set matrices include the effects of direct-input structural matrices [M2)], [K2] and
[B2,] which are not included in the eigenvalue analysis and are not subject to changes in the
design process.

The time-domain matrix equation of motion in modal coordinates is

(M) {€} + [Banl{€} + [Knn]{€} = {Pa(t)} (2.23)

where the generalized mass and stiffness matrices are
(K] =[] (K] + [KZ]) [9] = (O] + I (KEI[Y) (2:24)

and
[Man] = 17 ([Ma] + [MZ]) [#] = [1] + [$]7[M2][] (2.25)
where
[MI] = [¢al (M) [8ei;  [K2) = [T (KL o]
The generalized damping matrix is based on the regular damping options in ASTROS,

with some modifications,
[Ban] = [o(wn)]lwn] + [$]7[B2I[)] + ;"—3[@1 (2.26)

where

[Bi] = [6ai) [ B, ][4



and [wp] = [fl}l/ 2. The optional user-input damping parameters here are those used in the
standard ASTROS, namely the general structural damping g, w3 which defines the equivalent
viscous damping, and the modal damping table g(w).

The excitation vector in Eq. (2.22), {P,}, can contain prescribed external inputs, aero-
dynamic forces which are discussed in the following section, and inertial forces due to control

commands. The generalized forces due to prescribed external excitation are

{P0} = [Ban"{F(2)} (2.27)
The inertial forces due to control surface accelerations are
{Pi} = —[Mu]{5.} (2.28)
where
(M) = []7 ([Mic] + [M2]) (2.29)

where

[Mzzc] = [¢yi]T[Mg2g] [¢QC]
2.4.2 Sensitivity of Dynamic Matrices

The change of modal coordinates (by changing [+]) in each design iteration complicates the
sensitivity analysis compared to that of the fixed-basis analysis. To allow simple expressions,
the sensitivity analysis in each iteration assumes that the dynamic matrices of the next
iteration will be based on the current modal coordinates. Consequently, the differentiation
of [Kps] and [Myy] with respect to the design variables are based on Egs. (2.25) and (2.24)
with fixed [3], [Kf,] and [M2], and variable [K;;] [M;]. The resulting sensitivities are

- [Kuu] = T DGKVHy] (2:30)
and
%[ Mu, My | =47 [ DGMVs DGMVG; | (2.31)




2.4.3 Integrated section loads

Section loads due to aeroelastic response are calculated by the summation-of-force approach
which adds the effects of aerodynamic, inertial and prescribed forces. The effects of the

prescribed forces are
{PF} = [par]T{F (1)} (2.32)

where [¢,1] is the matrix of integration load modes. Each load mode contains the kinematic
structural displacements due to a unit displacement of a reference degree of freedom defined

by the user. The inertial parts of the section loads can be calculated by
{PL} = ~[M}{€} — [Mr]{3.} (2.33)
where the mass matrices are first defined by
| Mu Mo |, = 18a]” (IMo) + [M2)]) [ b0 e ] (2.34)

and then updated by

Ndy

| My Mp. | =] My M |, + > (v —w,) | DGMVLL, DGMVLC; ] (2.35)
=1
from which [Mp4] is calculated by
[Mph] = [ML][9] (2.36)

Following the sensitivity formulation above, the derivatives of the mass matrices associated

with the section loads are

0

B | Mn M. | =[DGMVLLy DGMVLC; ] (2.37)

10




2.5 Aerodynamic Forces

The unsteady aerodynamic routines in ASTROS assume that the structure undergoes har-
monic oscillations. Complex aerodynamic force coefficient (AFC) matrices (at a given Mach
number) for n, user-defined ”tabulated” values of the reduced frequency k = wb/V where w
is the frequency of oscillations and b is a reference semichord. These complex AFC matrices,
[Qxx(tke)] are stored in a data base for subsequent a.nalyses.‘ Their dimension is ng X n
where ny is the number of aerodynamic degrees of freedom. The ZAERO unsteady aero-
dynamic module also calculates the coefficient matrices [Q.(2ke)], [Qrc(ike)], [@Lr(3ke)],
[QLc(2ke)] and [@rg(ike)] in the following generalized force expressions. These matrices are
independent of the structural properties.

The generalized unsteady aerodynamic forces acting on the structural modes of a linear

aeroelastic system can be expressed in the frequency domain as:

{ P ()} = —q[Qnn(ik)[{{(iw)} — g[Qne(ik)}{dc(iw)} — %[th(ik)]{wa(iW)} (2.38)

where g is the dynamic pressure, V is the true air velocity, and {¢} , {6.} and {wg} are
the vectors of nj, generalized structural displacements, n. control surface commanded deflec-
tions (actuator outputs), and ng gust velocities. [Qprn), [@rc] and [Qrg] are the associated

generalized unsteady aerodynamic force coefficient matrices calculated by

[ Qm Qe Quo | = [¢kh]T[ Qudrn Quc Qic | (2.39)

where
[$rn] = [Gry)[dsa]

where [Gyy] is the spline matrix.

The unsteady aerodynamic section loads are

{Pp(iw)} = —q[Qra(tk) {{(iw)} — q[Qre(ek){bc(iw)} — -‘%—[Qw(ik)l{wc(iw)} (2-40)

11




where [@Qr4] is calculated by

[Qra] = [Qr][ra] (2.41)

Once calculated for the baseline structure with the original modes [¢;], the generalized

force coefficient matrices are updated during the optimization by

[th Qhe th]
Qin Qrc Qic

_ | ¥R ¥TQic ¥7Qic

‘[ Qb Qu  Que (242)

12



Chapter 3

Rational Aerodynamic
Approximations

Rational aerodynamic approximations (RAA) are required in order to cast the dynamic
aeroelastic equation of motion in a state-space form. The approximation options described in
this chapter should be selected for best combination of accuracy and efficiency in subsequent
stability and response analyses.

The approximations are constructed for the baseline model with the aerodynamic data
associated with the original modes [@4;]. Nevertheless, the subscripts of the generalized
aerodynamic matrices in this chapter are denoted by h instead of i for consistency with the
notations in other documents. The resulting approximation matrices remain unchanged, ex-
cept multiplication by normalization matrices (see Chapter 4), throughout the optimization

process, in all the ASE disciplines.

3.1 Minimum-State Approximation Formula

The generalized unsteady aerodynamic forces in Eqs. (2.38) and (2.40) can be expressed in

the Laplace s domain as:

S
Lc(s

R P ) [ o [

13




The AFC matrices are normally not available as explicit functions of s. In order to cast
the aeroelastic equation of motion in a time-domain constant coefficient equation, the AFC
matrices have to be described as rational functions of s. The most general rational function

approximation of the merged AFC matrices

_ | @n|_| @wm Qr Qne
()= [ QL] B [QLh Qre Qe }

that leads to a state-space aeroelastic model can be cast in the form

[g:g;]=[222]+[ﬁ21]1’+[32]p +[g"]([I]p [R)'[Elp  (32)

where p is the nondimensional complex Laplace variable p = sb/V and all the matrix coef-
ficients are real valued [2]. The common [R] and [E] facilitates the formulation of section
loads as output variables in the state-space aeroelastic equations of motion. The number
of structural states in the resulting state-space model is 2n,. The number of aerodynamic
states (nq) is equal to the order of the aerodynamic root matrix [R].

Since the aerodynamic data is given for harmonic oscillations, the approximation process
starts with the replacement of p in Eq. (3.2) by ik, where k is the nondimensional frequency
wb/V. Least-square procedures are then used to calculate the approximation coefficients
that best fit the tabulated [Q(ik,)] matrices.

Roger [1] dealt with [@4] only. He approximated each aerodynamic term [Q4(ik)] sepa-

rately, but with n; common aerodynamic roots,

. n+2
Lk .
[@n(ik)] = [Ano] + tk[Am] — K[ Apa] + 2 = + o -1Au] (3.3)
which can be cast in the form of Eq. (3.2) with
I Ans
Da=[1 1], [Rl=- 71 , [E]=| Am (3.4)

which implies that the resulting number of aerodynamic states is ng, = n; X ny.
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Equation (3.4) shows that Roger treated the elements of [E] as free variables in the
approximation process, while those of [Dj] were fixed, and that [R] has repeated roots. The
MS method [2, 3] was based on the realization that the number of acrodynamic states per
desired accuracy can be reduced significantly by treating all the elements of both [Dj] and
[E] as free variables, and by letting the diagonal [R] be with distinct negative roots. The
number of MS distinct roots, m, and their values are defined by the analyst. This number is
typically larger than that in Roger’s approximation, but the number of resulting aerodynamic
states, n, = n; is much smaller. Typical MS applications [4-6] used 4 to 6 roots with the
span of their absolute values similar to that of the tabulated reduced frequencies. The MS

applications showed small sensitivity to the root values.

3.2 Weighted Least-Square Fit

To facilitate real-valued algebra, the complex approximation expression in Eq. (3.2), with p
replaced by ik, is separated into real and imaginary parts. The real part of the h partition
is

[Fn(k)] = [Ano] — k*[Ana] + K[ Da][ K (k)] [ 2] (3.5)
where

(K (k)] = ([0 + [RP) ™

is diagonal, and the imaginary part is
[Ga(k)] = k[Aw] — k[Da][K (R)][R] [E] (3.6)

The L partition of Eq. (3.2) is expressed by Egs. (3.5) and (3.6) with subscript A replaced
by L. It can be noticed that both [Q4] and [Q1] use the same [R], [K (k)] and [E] matrices.
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The comparison of Eqgs. (3.5) and (3.6) with the real and imaginary parts, [F(k¢)] and
[G(ke)], of the tabulated AFC matrices [Q(ik,)] provides an overdetermined set of approxi-
mate equations. The task is to find the free approximation coefficients in [Ay), [Ai], [A2], [D]

and [E] that minimize, under some constraints, the total least-square approximation error

Z,Q.,(Zkg) Qi;(2ke) W, 5]( (3.7)

i,
where W;;, is the weight assigned to the 1j-th term of the /-th tabulated AFC matrix. The
weight options in Eq. (3.7) are discussed in Section 3.5.

For numerical efficiency, it is desired to decompose the overall least-square problem into a
sequence of small-size standard least-square problems, each based on the general approximate
equation

[W*] [A%)e{a"} ~ (W*]e{6'}e  for £=1,m (3-8)

where {z*} is a subset of unknown coefficients which are uncoupled with others, {b*}, is
extracted from the tabulated data, and [A*], is a function of k,, the aerodynamic root values
and the constraints associated with unknowns, as detailed below for the various techniques.
The weight matrix [W*], is a diagonal matrix whose terms are the weights W;;, associated
with data terms in {6*},. The weighted least-square solution for {z*} is obtained by solving
the symmetric problem

[CH="} = {8} (3.9)

where
Z[A' [W*114%],
{6} = ;[A']z [W*13{6"}

Various approximation cases are presented in Sections 3.3 and 3.4 by defining their sequence

of least-square solutions, the unknown coefficients {z*} in each solution, and the associated
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data vectors {b*}, and approximation matrices [4*]; of Eq. (3.8). The weight are discussed

in Section 3.5.

3.3 The Unconstrained Problem

The approximation coefficients of Eq. (3.2) are determined by solving a sequence of weighted
least-square problems. The coeficients of [Q] are determined by either Roger’s or the MS
procedures. The coefficients of [Q] are then defined with [E] of the [Q4]. The diagonal [R]

is defined by the user in all the cases.

3.3.1 Roger’s approximation

The structure of Eq. (3.3) indicates that the coeflicients of Roger’s approximation can be

found for each aerodynamic term separately by performing nj X (np + n. + ng) solutions of

Eq. (3.9) with

2 2 -AhO"
1 0 —k oty oty - v {Fu(k)
A*, = Ki4af ki 44E , ) Ahl;,’ : S - hiz A\t
A%, 0 k O 7ﬂ7kf+j/1 -_4-“!_”§+;2 {=} : L7 Ghy; (ke)
(3.10)

where the number of unknowns in each solution is n; +3. The right-side terms, Fy,; and Gy,
are the real and imaginary parts of the (z,7) term of [@Qn(ik.)]. The resulting {z*} vectors
and the user-input lag term 7; are used to define the coefficient matrices in Egs. (3.3) and

(3.4).
3.3.2 Minimum-state procedure

With both [Dg] and [E] in Eq. (3.2) being unknown, the MS problem for a given [R] is
nonlinear. It is solved iteratively by starting with an initial guess of [D;] in which at least

one term in each row and each column is nonzero. For a given [Djy], Egs. (3.5) and (3.6)
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imply that the unknown MS coefficient matrices [Apo], [An1], [An2] and [E] can be calculated

by performing ns + n. + ng column-by-column solutions of Eq.(3.9) with

Ao,
q _[I 0 —KI KEDyK(k) R v Fu(ke)
[A ]t_ 0 klI 0 —k[DhK(kt)R ’ {‘D}— Ahz,» ’ {b }l_ Ghj(kt)
E;

(3.11)
where the j indices relate to the j-th columns of the respective matrices. The number of
unknowns in each regular solution is 3ns + n;. The calculated [E] is then used to update

[Ano), [An1), [Ar2] and [D4] by performing ns row-by-row solutions of Eq. (3.9) with

AL,
o [T 0 —KI RETK(k) w_ | oAz w [ FT(ke)
Wle=10 b1 0 —kEKER | Y=V UE 0 BR= 6F k)
T
h;

(3.12)
where the ¢ indices relate to the i-th rows of the respective matrices. The number of unknowns
in each solution of Eq. (3.12) is 3(na+n.+ng)+ni. The least-square solutions with Egs. (3.11)
and (3.12) form a D — E — D iteration which is repeated until convergence is obtained or
until a specified maximum number of iterations is reached.

The iterative nature of the MS procedure, and the relatively large number of unknowns
solved for simultaneously in each iteration of the regular unconstrained problem, require a
considerably larger computation time than that of Roger’s method. A major reduction in the
MS computation efforts was obté.ined in Refs. [2-7] by applying 3 approximation constraints.
The efficient solution of Eq. (3.9) presented in Ref. [8] allows similar computational savings
without having to apply constraints. It can be observed that the structure of the least-square

equation (3.9) with the coefficients and variables of Eq. (3.11) is:

Cu 0 Ciz Cu Aho, b,

0 Cu» 0 OCy Apy; b2
Cis 0 Ci Ci Apa, bs (3.13)
cr, CF, Cg; Cus E; by
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where [C11], [Ca2], [C13] and [C33] are diagonal. This structure facilitates an efficient solution
of Eq. (3.13) through a sequential reduction of the problem size. The first row of Eq. (3.13)

yields:
{An;} = [Cu] ™ ({t1} — [C1sl{An,} — [Cra{E}}) (3.14)

The substitution of Eq. (3.14) in rows 2 to 4 of Eq. (3.13) yields:

C2 0 Ch Any; by
0 Cs3 Cs Any; ¢ =14 b3 (3.15)

where [C;] and [C33] remain diagonal. The next step is the extraction of {An1,} and {Anz,}
from the first two rows of Eq. (3.15), and their substitution in the third row. The result is

[CH{E;} = {b} (3.16)

where

[é] 044 - 027:40;21024 - 633‘40&;16_'34

{8} = by— CLCH'b, — CLC5 s

Equation (3.16) is of order n; only, with symmetric [0]. The diagonality of [Cy;] and
[C13] in Eq. (3.14), and [C2,] and [Cs] in Eq. (3.15) implies that the reduction of {An,},
{An1,} and {An2,} does not involve matrix inversion and can be performed term by term.
The reduction of the i-th row in {Ano;}, {An1,} and {Ans,} affects only the i-th row and
i-th column in [Cld).

The construction and solution of Eq. (3.16) are repeated until the entire [E] is found
for the last calculated [Dy). For each {E;} we can use Eq. (3.15) for {As1;} and {Ass,},
and then Eq. (3.14) for {Apo;}. This recovery is required, however, only at the end of the
iterative process, unless we want to monitor the approximation error of Eq. (3.7) during

the iterative process. The same reduction and solution process can be performed for [Ang],
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[An1], [Anz] and [Dy], this time row by row, with the coefficients of Eq. (3.12) using the last
calculated [E].

The sequence of least-square solutions is such that, theoretically, the total error should
never increase when the process progresses. However, numerical difficulties may cause it to
increase when high-order approximations are applied with insufficient amount of data [6].
As demonstrated in the numerical example of Ref. [8], the reduction process reduces the

solution time of a typical unconstrained problem by more than 80%.

3.3.3 Integrated load coefficients

The coefficients of [Q;] in Eq. (3.2) are calculated by a direct least-square solution with the
[E] of the [Qn] approximation. Equation (3.9) is solved ny times (once for each required
integrated load) with the coefficients and variables of Eq. (3.12), with subscripts & in {z*}
and {b*}, replaced by L.

When Roger’s approximation is used, the resulting [Dy] is an ng, x (nj * n;) matrix and
[@1] is approximated with [R] and [E] of Eq. (3.4). With MS approximation the size of [Df]

is np x ny and [Qy] is approximated with [R] and [E] of [Q].

3.4 Application of Constraints

Reference [5] presented the various options in the 3-constraint MS procedure, in which 3
constraints have to be assigned to each aerodynamic term even if they are not desired. Here,
when they are not required, it is still often desired to obtain exact fits at specified reduced
frequencies or to null out some coefficients. The most frequently used constraint is a match
of the steady-aerodynamics data (at k = 0). An imaginary-part data-match constraint at a
k close to 0 yields aéij /0k at k = 0, which affects the quasi-steady aerodynamic damping,
to be equal to that of the tabulated data. Data-match constraints at higher & values are

sometimes desired to increase the accuracy of anticipated flutter mechanisms. Even with
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the reduction technique shown above, up to 3 constraints can be applied in a way that saves
some computation time. On the other hand, it always increases the total fit errors, and

sometimes causes unwanted wiggling of the resulting curve fits near the data-match points
[6].

The constraint formulation is given below for the approximation of [@4], but is applica-
ble to the terms of [QL] as well. The optional constraints that, when applied, reduce the

approximation problem size are:

1. Steady aerodynamics match enforced in Eq. (3.5) by setting
AhO,;j = Fh,J(O) (3.17)

2. Either imaginary-part match at a nonzero k = k, enforced in Eq. (3.6) by setting

1
Ahl,-j = -E—G}Hj (kg) + DhiK(kg)REj (3.18)
g

or

Apy,; =0 (3.19)
3. Either real-part match at a nonzero k = k; enforced in Eq. (3.5) by setting

1
Anay; = 7 (Ano,; — Fai;(ky)) + Dn K (ky)E; (3.20)

or

Apg,; =0 (3.21)

Each optional constraint in Eqgs. (3.17) thru (3.21) can be applied for a different sub-
set of aerodynamic terms, not necessarily for all (,7) terms uniformly as done in previous
developments [4-6]. Different aerodynamic terms can be assigned with different match fre-

quencies, namely different k, and k; values in Egs. (3.18) and (3.20), while some of them
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are constrained by Eq. (3.17) and the others are not. A definition of the default constraint
set is requested in the ASE module. Other constraint sets that replace the default set can
be assigned to selected columns of [Q4] and [QL].

The constraints are applied in the approximate equation level, Eq. (3.8), by eliminating
terms from {z*} and changing [A*], and {b*}, accordingly. This is done before the construc-
tion of Eq. (3.9).. The process is described below with the unconstrained {z*}, [A*], and
{6*}¢ of Eq. (3.11) or Eq. (3.12) being the starting point.

The application of the steady aerodynamics constraints of Eq. (3.17) eliminates the i-th

term in {Axo, }, and the associated column in [A*], and replaces Fj, (ke) in {b°} by
Fi;(ke) = Fi;(ke) ~ i, (0) (3-22)

The application of the imaginary-part constraint of either Eq. (3.18) or Eq. (3.19) elim-
inates the i-th term in {A;,}, and the associated column in [4*],. The match constraint of
Eq. (3.18) also replaces the i-th row of the block [—k, Dy K (k;)R] in [A*], by [~k,Ds, Ky(k¢)R]
where

[Kg(ke)] = [K (k)] — [K (k)] (3.23)
and the Gj,; (k) term in {b°} is replaced in this case by
- k,
Ginij (ke) = Gh; (ke) = = Gi; (kg) (3.24)
Z

The application of the real-part constraint of either Eq. (3.20) or Eq. (3.21) eliminates
the i-th term from {Apy,}, and the associated column from [A*],. The match constraint
of Eq. (3.20) also replaces the i-th row of the block [k7DnK (k)] in [A*], by [k2Dp, K (k)]
where

(K (ke)] = [K (k)] — [K (kp)] (3.25)
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When Eq. (3.20) is applied together with Eq. (3.17), Fy,(ke) of {b*} is replaced by
_ Kk}
Fhij (kl) = Fhij (kl) - Fhij (0) - E}' (Fhij(kf) - th‘j (0)) (3-26)

Otherwise, when Eq. (3.20) is applied but Eq. (3.17) is not, Fj,; (k) becomes

. k?
Fhij(ke) = Fii;(be) — ‘];?Fhi,'(kf) (3.27)
and term (z,:) in [A*], is replaced by
= k?
L-1-% (3:28)

The application of constraints to the coefficients of Eq. (3.12) is similar to that shown
above for Eq. (3.11). When the three data-match constraints of Eqs. (3.17), (3.18) and (3.20)
are applied simultaneously to all the (2, ) terms, and when all the terms are assigned with

the same match frequencies k; and ky, the least-square matrices in Eq. (3.11) are reduced to

. ktzDhKf(kl) Y . .y Fh_.,' (kl)
wl=| Pt ] =y = { B0 (329)
where Fy, (k) and Gy, (k.) are defined in Eqs. (3.26) and (3.24) respectively, and Eq. (3.12)

is reduced to

wl= | e ] wr=onn en={ E5) e

Since constraints are applied in the approximate equation level, Eq. (3.8), and the re-
duction process in Egs. (3.13-3.16) is performed in the solution level, all constraints have to
be applied before the reduction starts. It is clear from the previous section that constraints
can be applied selectively with each aerodynamic term having a different number and type

of constraints. To summarize the solution process, a single D — E — D iteration in MS

approximation of [@4] is performed in the following steps:
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1. Construction of [4*); and {6*}; of Eq. (3.11), with selected constraints from Eqs. (3.17-

3.21), for the j = 1 column of [Q4(p)] in Eq. (3.2).

2. Construction of [C] of Eq. (3.9) for this column, whose terms correspond to {E,} and

to the terms in {Ano,}, {An1,} and {An2,} that were not constrained in step 1.
3. Reduction of [C] to obtain [C] of Eq. (3.16), and solution of Eq. (3.16) for {E;}.
4. Repetition of steps 1-3 for j = 2,n, + n. + ng to calculate the entire [E].

5. Application of steps 1-4 to the calculation of [D;] row by row, starting with the coef-
ficients of Eq. (3.12).

6. Recovery of the constrained terms in [Aso], [An1] and [Ano) by Eqs. (3.17-3.21), and
the unconstrained terms by Eqs. (3.14) and (3.15).

With Roger’s approximation, steps 1-4 and 6 are performed once, starting with Eq. (3.10).

To approximate [Qy], only a single E — D iteration is performed.

3.5 Data Weighting

Least-square curve fitting tends to produce smaller percentage errors at data points of large
numerical values. However, large numerical values do not always reflect the actual impor-
tance of accurate fit of an element in the aerodynamic matrices. To eliminate the effect of
the way the structural normal modes are normalized, they are normalized to unit gener-
alized mass before the generalized aerodynamic matrices are calculated. The weighting in
the least-square problem, Eq. (3.8), can be either uniform, with all W;j; = 1, or based on
the automatic physical weighting process [4] whose expressions are given below. The phys-
ical weighting can be applied only to the aecrodynamic terms which appear in the dynamic

equation of motion, namely [@}].
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3.5.1 Maeasures of aeroelastic importance

The physical-weighting algorithm developed in [4-6] was designed to weight each term of
the tabulated data such that the magnitude of the weighted term, Eq. (3.36), indicates
its “aeroelastic importance”. The idea is that the weight assigned to a data term should
be proportional to the estimated effect of a unit approximation error on a representative
aeroelastic property. Different representative properties are selected below for the structural,
control and gust-related partitions of the [Qx(ik€)] matrices. The error effects are estimated
by the differentiation of the selected aeroelastic properties with respect to the aerodynamic
terms.

The measures of aeroelastic importance are based on the frequency-domain equilibrium

equation

(R = (Ml ol — gl@nalik)]) (6.68)} — L @uoik) {wa(ik)}  (3.31)
b vV

where

E2V?  ikVyg

[Chn(ik)] = —[Mi]b—ﬁ— + T[wh]b[Mii]b + [Kii] + q[@na(3k)]

The determinant of [Chx(ik)] is sometimes called the flutter determinant. It becomes zero
when the dynamic pressure g, the true airspeed V and the reduced frequency k are at their
flutter boundary values. The values of V and q reflect design flight conditions at which the
open-loop system is stable for all the tabulated k; values. The modal damping g is one of
the user-input weighting parameters discussed in Section 3.5.2.

The weights assigned to the terms of a data matrix [Qnn(zke)] are based on their effect
on the determinant of the system matrix [Ch(ik,)] of Eq. (3.31). The absolute values of the
partial derivatives of this determinant with respect to Qna,;(ik¢), divided by the determinant

itself, is shown in [4] to be the ij-th term of the weight matrix
- . ae|T
[Win], = a|[Chn(ike)] ™| (3.32)
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The weights assigned to the terms in the j-th column of a data matrix [@Qne(iky)] is based
on the open-loop Nyquist frequency response of the j-th actuator to excitation by the j-th

control surface. The actuator response is related to the modal response by

{8(w)} = [T (iw)][punl {£(iw)} (3.33)

where [T'(iw)] is a matrix of transfer functions relating actuator outputs to sensor inputs,
and [¢s] is the matrix of modal deflections at sensor inputs. The physical-weighting transfer
functions in [T'(iw)] should be simple and unrelated to particular aeroservoelastic parame-
ters. Structural, narrow-band filters with high sensitivity to parametric changes should not
be included as it may result in the assignment of low weights to important aerodynamic
data terms. Hence, the physical weighting algorithm assumes transfer functions which are
based on a third-order actuator, multiplied by a control gain. The magnitude of the partial
derivative of the Nyquist signal with respect to Qx,, ;(tke) is shown in [4] to be the ij-th term
of the weight matrix

[Wae], = a [T GRNgarlCrn ik " (3:34)

The weights assigned to the terms of the j-th column of a data matrix [@na(iky)] is
based on the power spectral density (PSD) of the open-loop response of a selected structural

acceleration to continuous gust, derived from Eq. (3.31),

BV o (O (k)] {Qnc, ()

L 2@,,,].(@) (3.35)

QZJ' (ke) =

where [¢.5,] is a row vector of modal displacements at the selected response point, and @, (k)

is the PSD function of the associated gust velocity,

04, Lg 1+ 3(keLy [b)?
m V [14 (kLy/b)72

ij (kl) =
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where aﬁ,j J-th gust RMS velocity, and L, is the gust characteristic length. The partial
derivative of /®.. (k) with respect to @Qag;;(ik¢) is the ij-th term of the weight matrix

[WhG]t = M

L (6nllOm(ie)] ]| (Ble (3.36)

where [®,]; in an ng X ng diagonal matrix whose elements are P, (Ke).-

3.5.2 Weight scaling and modifications

The variations of terms in the weight groups [Wisls, Eq. (3.32), [Whele, Eq. (3.34), and
[Wigle, Eq. (3.36), with k may have very sharp peaks. In addition, the peak values of many
terms may Be several orders-of-magnitude smaller than other peaks. The extreme weight
variations have the effect of neglecting much of the data, which may cause numerical ill-
conditioning problems and unrealistic curve fits. To ensure realistic interpolation between
the tabulated & values, and to facilitate the application of the resulting aeroelastic model
to a variety of flow conditions, structural modifications, and control parameters, it may be
desirable to moderate the weight variations. This can be done by one or a combination of

the following means:
e assignment of a relatively large damping parameter g in Eq. (3.31),
o widening the weight peaks,
e scaling up the extremely low weights.

Peak widening is performed in n,q4 cycles applied sequentially to each weights, W;;(k;), of
the 3 weight groups. In each cycle, W;;(k.) is changed to max{W;;(ke-1), Wi;(ke), Wi;(kes1)}
of the previous cycle. The weight matrices are then normalized and combined to the final

weight matrix

Wil, = | Wanle Wacle [Whcle | (3.37)
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where a term in [Wj), is

1 Wcut T
Wih.., = _ , == Whi.. 3.38
Phist (max { max;, ; {Whh;‘j} Whhq‘ } ) Pht ( )

where
Whn,; = max {lth, (ikz)IWhh,-,-,} (3.39)

and the terms of [Wp], and [Wyg], are calculated similarly (but separately). The upscale

parameter W, is defined by the user. The resulting magnitudes of the weighted terms,

Qhi; (ke) = Wiy, |Qn,; (k)] (3.40)

fall between We,,: and 1.0 when the value of 1.0 typically appears only once in each group. The
modified physical weighting is actually a compromise between the the unmodified one (with
Tuwd and We,; equal zero) and the data-normalization weighting of Ref. [4]. With n,4 = ne
and W = 1.0, all the physical-weighting effects are suppressed and the weighting becomes
a data-normalization one. Recommended parameters in typical cases [5] are n,q = 2 and
Weu: = 0.01. Various applications demonstrated that the resulting aeroservoelastic models
were adequate for analyses with large variations of dynamic pressures [4-6, 11], control gains

[12], and structural parameters [13].

3.5.3 Relative importance of modes

The physical weights can be used to rate the vibration modes according to their relative
aeroelastic importance. Based on the magnitudes of the weighted aerodynamic data terms,
Eq. (3.40), calculated with n,4 and W, equal zero, three modal measures of aeroelastic

importance are defined for each structural vibration mode by

Qi = max{|Qm, (iR}, t. = max {|Qne,, (k)| }
“« = ﬂ;.SX{IQ;.Gi,-(ike)I} (3.41)
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These measures can be interpreted as indicators of the aeroelastic activity of the i-th vibra-
tion mode, on a scale of 0 to 1, in three categories: a) influence on the open-loop system
roots (Q?); b) role in the aeroservoelastic loop (Q?); and c) contribution to gust response
(Q;)- Being based on a limited analysis, these measures should be useci with caution. Their
main usage is in supplying physical insight and in pointing out the structural modes that

can be eliminated in subsequent analyses from the model without causing significant errors.
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Chapter 4

State-Space Aeroservoelastic
Equations

The time-domain ASE model for stability analysis is constructed from the separate models of
the aeroelastic plant, the sensing and actuation models and the control system, all expressed
in state-space. In the aeroelastic model, each modal coordinate is represented by two states:
the modal displacement and its velocity. Rational approximation of the unsteady AFC
matrices in the Laplace s domain facilitates the augmentation to incorporate the aerodynamic
states in the model. The system matrix of the plant model can be used for flutter analysis of
the open-loop aeroelastic plant. The control system includes the control surfaces driven by
actuators, sensors related to the structural degrees of freedom, and a linear MIMO control
law that relates the actuator inputs to the sensor readings. The full ASE model can be used
for control margin computation and for closed-loop flutter analyses. Since only stability and
flutter issues are addressed in this chapter, no external inputs, such as pilot commands and

wind gust inputs, are incorporated in the model.

4.1 Aeroelastic Model

The second-order time-domain equation of motion of the structure was defined in Eq. (2.23),

with the generalized external forces represented by {P,(t)}. For stability analysis of the
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open-loop aeroelastic system or the closed-loop aeroservoelastic system, {P,(t)} includes
aerodynamic forces due to structural dynamics, and inertial and aerodynamic forces due to
control-surface motion.

The control-induced inertial forces are defined in Eq. (2.28). The generalized aerody-
namic forces are defined in the frequency domain in Eq. (2.38). The aerodynamic force
coeflicient (AFC) matrices are first calculated at several user-defined tabulated reduced fre-
quency values, k,, similar to a regular frequency domain flutter analysis. The tabulated
matrices are used for approximating the AFC matrix as a rational function of k£ in the entire
frequency domain, as described in Chapter 3. An expansion to the entire Laplace domain is
performed by replacing ¢k in the rational expression by the non-dimensional Laplace variable
p = sb/V, which yields Eq. (3.2). The substitution of p = sb/V in the expression for [Qx(p)]
of Eq. (3.2) gives

2

[0n(s)] = [Asa] + mlAuls + 2

ClAuls + lAuls + (D4 (s - 3IR) (Bl (41)

The [Ap] and [E] matrices are column partitioned as
[Ahn] = [Ah,  Abe] (n=0,1,2), [E] = [BEw E

As stated at the beginning of Chapter 3, the coefficient matrices in Eq. (4.1) are calculated
for the baseline structure with the generalized matrices associated with the original modes
[¢ai], before the transformation of Eq. (2.21) is made. The actual modes that serve as
generalized coordinates in each optimization iteration are [¢,5] which relates to [¢,;] via [¢]
using Eq. (2.22). Consequently, the coefficient matrices of Eq. (4.1) have to be updated in

each iteration by

[Ann  Anea] =W At Aic],  [Dal =RIT[Di],  [Ex] = [Ei]W] (4.2)

where the subscripts ¢ relate to the matrices calculated in the rational approximation process,

denoted in Chapter 3 with subscripts h.

31




To facilitate state-space formulation, an augmenting aerodynamic state vector of dimen-

sion n, is defined by its Laplace transform as

foa(ot = (s~ S1R))  (IBRHEC)} + [EHEL)D)s (43)

Equation (3.1) without the gust term and Eqgs. (4.1-4.3) yield the s-plane generalized aero-

dynamic force vector

(PR = — alOm(HE(e)} - alQne(HLe)}
= a ([l + s+ o)) (66)

- (k] + il + pldiel?) )
- alDil{ea(s)} (@4

Equations (2.23), (2.28) and the time-domain version of Eq. (4.4) yield the state-space

open-loop aeroelastic equation of motion

{iac} = [Aae]{mae} + [Bae]{uae} (45)
where
S
{za} = { 3 } {uae}‘:{ 5c}
T, R
0 [1] 0
[Aae] = “[M]*l (Knh + qAnn,] —[M]_l [th + %I_Ahhl] “Q[M]—l[Dh]
i 0 [Er] %— R)
] 0 0 0
[Bael = | —alM] ™ [Abee] —BIH)7 [Ane)] ~[H] [Mye + 2 Aps,]
0 [E.] 0




[a1] = [Mhh]+g‘;b;[Ahhz]

The number of states in Eq. (4.5) is 2ns + n,.

The outputs of the aeroelastic plant are sensor readings. It is assumed here that the
sensors measure either structural displacements, velocities or accelerations, and that the
measurements are perfect. Sensor dynamics can be modeled in series with the sensors’
outputs and incorporated in the ASE model as part of the control system, discussed in the
sequel. The outputs are assumed to be linear combinations of the structural state response.
The combinations are defined by the modal displacement (or rotation) row vector [¢,] at the

sensor location. Thus, a displacement sensor reads

ya=[dy 0 0]{zac} (4.6)
A velocity (rate) sensor reads
=0 4 0]{ze) (1)

and an accelerometer reads

va = [8,{¢}
=~ [0 ([ (Kt + gAns] [Bun + gngmu] a[Dh] | {#ae} +
+ [ 9[Ahs] B1Ana] [Mic + %2 Ane,| | {ttac}) (4.8)

In general, the output of n, sensor readings can be expressed by

{Yac} = [Cacl{Zae} + [Dacl{ttac} (4.9)

4.2 Actuator Model

The dynamic model of the actuator driving the i-th control surface is specified by a transfer

function having the form

Sas) _ b (4.10)
Uae,(8) 8%+ ai1s? + ains + aiz .
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where u,., is the servo-commanded (actuator input) control surface deflection. The DC
(s = 0) gain of the transfer function in Eq. (4.10) is one, and thus in steady state ua,, = 4.

The order difference of three between the numerator and denominator in Eq. (4.10) is
justified on physical grounds: second order difference represents the control surface deflec-
tion response to a force input and a first order lag used to model the realistically limited
bandwidth of the actuator. Due to this order difference, &;, &- and 5, can be defined as
independent states in the actuator state-space model, and thus used directly as inputs to
Eq. (4.5) and in connections to acceleration sensors. Higher order actuator dynamics can be
defined by connecting additional transfer functions in series to Ugc;. These additional trans-
fer functions can be included as part of the control system model discussed in the following
section.

A state-space realization of the actuator dynamics of Eq. (4.10) is

0 1 0 0
{Zoe; } = 0 0 1 {Tac:}+4{ 0 P ua (4.11)
03 —G2 —aj a;3
where
.
{Zaci} = ‘Ecz‘
&,

For system with n. > 1 actuators, the state-space model of all the actuators is arranged
so that the total actuator state vector {z,.} equals to the input vector {u,.} of Eq. (4.5).

Thus the actuator state vector and inputs are

(-sc Uac,
{xac} = ‘Ec {uac} =
<se: Uqgc,,,

where {6.}" = [, b, --- 8c,..]- The state-space equation for {z,.} is
. 02n Xxn I2n X2n ] [ 02n Xn, ]
Tacf = ene e Tgaer + e Uge 4.12
O B R U o U ) FOR SR
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where 02, xn, and o, x2n, are, respectively, zero and identity matrices of appropriate dimen-

sions, and [A,.], ¢ = 1,2,3 are diagonal matrices defined by

[Asc;] = diag{aii,- .., eni}

Equation (4.12) can be stated in a compact form as

{Sac} = [Auc] {Zac} + [Bac] {ttac} (4.13)

Since {Tac} = {Uae}, the augmentation of the aeroelastic states {z,.} of Eq. (4.5) to

include the actuator states {z,.} of Eq. (4.13) yields
{2:} = [Apl{z5} + [Bp[{up} (4.14)
where

{wp}={§:j} [A«»1=[A6“ ﬁiﬁ] {BP]=[BOM]

The output (sensor measurement) equation (4.9) becomes

{4} = [Col{zp} . (4.15)

where

[Cp] = [ Cae Dg. ]

Note that in equation (4.15) there is no direct feed-through between the input {u,} and

the output {y,}. This results from the limited bandwidth of the actuators.

4.3 Control System Model

The control system is modeled as an interconnection of three types of basic control elements
in addition to a variable gain matrix. The interconnections within the control elements and

between them and the aeroelastic (AE) system can be either fixed or through the variable
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Figure 4.1: The control system interconnection model. Thick lines represent
fixed connections. y,, ¢ = 1,2,3 are the sensor reading inputs
and up,,1 =1,...,5 are outputs to the actuators.

gain matrix, the elements of which are subject to subsequent stability margin analysis, as
demonstrated schematically in Figure 4.1.

The ASE model can be used for parameter optimization of the AE system. In this
optimization process, the control system is assumed to be constant, except of possible vari-
ations in the variable gain matrix elements. Thus, only the AE and variable gain matrix
are changing in the ASE model during the optimization. To avoid unnecessary recalculation
of the entire ASE model due to those changes, the control system with the fized connec-
tions is constructed only once and is reused in the ASE modelbreconstruction throughout
the optimization process, thus reducing computational load. Clearly, if the control system
is updated as a result of significant changes in the AE model, the entire ASE model has to

be reconstructed.
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4.3.1 Control System Elements

The control system is constructed from three types of elements: single-input-single-output
(SISO) elements specified as transfer functions, multi-input-multi-output (MIMO) elements
defined in state-space, and zero-order junctions. The parameters of these elements are as-
sumed to be constant. The overall control system variations are accounted in the above

mentioned variable gain matrix.
SISO Control Elements

A SISO control element is defined by a proper transfer function T} (s), which is then realized
in state-space inside the ASE module. A general transfer function from the input u,.; to

the output y,.; is expressed by a ratio of polynomials in s

Ysei(s)  bois™ + byt oo+ by

Toei(s) = Uooi(3) "+ arss Tt Fans (4.16)
The controller canonical realization of Eq. (4.16) is
Tsei} = [Aseil{Tses Bie,i e,
{ ys'e,}; = {Cse:j;{:mse:‘i;:l"l_-{lt)se,i;i‘e,i | (*.17)
where
0 0
i = | & T {Bui} =1
| —@ni —Gnoy -0 —ayy 1 (4.18)
[Cses] = :(bn,i—bo,ian,i) (bn-1 — boiGn-15) -+ (b1; — bosa1;) ]
Dy = bos

The number of states in {z,} is equal to the order n of the denominator polynomial in

Eq. (4.16).
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MIMO State-Space Control Elements

A MIMO state-space control element is defined by its order (number of states), the number
of inputs and outputs, and the associated state space dynamics and output matrices. These
matrices are defined by the user as direct matrix input (DMI) entries or by INPUTT?2
MAPOL commands. This facilitates interaction with external control design codes. The
equations of a MIMO state-space element are

{Zmes} = [Ameil{Tmes} + [Bumesl{tme.i}

{Ymei} = [Cmeil{Zmesi} + [Dome;i]{time,:}

A special case of Eq. (4.19) is a SISO element specified in state-space format, in which case

(4.19)

[Bme;i] is a column vector, [Cyn.] is a row vector and [Dip. ;] is a scalar.
Zero-Order Control Elements

A zero-order element is defined by its number of inputs and number of outputs. This is

a junction element in which every output is a weighted sum of the inputs. The element
equation is simply

{Yjes} = [Djesl{ttses} (4.20)

where the element of [D,. ;] are the various weights, which can be positive, negative or zero.

Clearly, the zero-order element is a special case of a MIMO element. It is separately

introduced, however, to simplify the input format and internal assembling.

4.3.2 Fixed Connections in the Control System Model

The overall control system is constructed as an interconnection of the above defined control
elements and the variable gain matrix, discussed in more detail in the next section. To

construct this interconnection, all the control system elements are combined into one (not

38



connected yet) state-space model

de | _ [Ae 0 |foe) [Be 0 0 ]) "
:i:me - O Ame wme 0 ‘Bme 0 ume
L i - je

- 4.21

yse [ Gse 0 1 T Dse 0 use ( )
Yme = 0 Che { z’e }+ 0 Dn. 0 Ume
Yje L 0 0 i me 0 0 Dj ] Uje

where the various blocks represent all the elements of the same type. For each block, its
state, input and output vectors combine all the element vectors, and the state-space matrices

are block diagonal. As an example, the SISO elements are grouped as follows:

’ Tse,1 Uge,1 Yse,1
{Zse} = {ttee} = {Yse} =
Tse,nge Usense Ysenge
[Ase] = dla'g [ Ase,l : Ase,n,e ] [Bse] dlag [ Bse,l Bse,n“ ]
[Cse] = dla'g[ Cse,l ce Cse,n,e ] {D se] = dlag [ D se,1 - D sense ]

where n,. is the number of SISO elements. The same construction is performed for the 7,
MIMO and the nj. zero-order elements.

For simplicity, it is assumed that the input and output of a fixed connections cannot
appear in another connection. Thus, if an output of an element is used as an input to more
than one other element, it should be first connected to a “splitting” zero-order junction with
unity weights, the outputs of which can then be used as necessary. Similarly, if an input
of an element is a sum of outputs of several other elements, it should be preceded with a
summing junction (many inputs and one output). To avoid confusion, an output of a control
element cannot be connected to its own input. After the fixed connections are applied, the
associated inputs and output are eliminated from the equations of motion.

In a fixed connection among control elements, an input of a control element wu,, is set

equal to an output of another control element y.., namely u., = y... To perform all these
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connections, we rewrite the state-space model of Eq. (4.21) and re-arrange its inputs and

outputs as follows:

i

(o} =4 J{o}+ B0 B ){ 20}

}
e d=la Gy B B [{e )

where {u,} and {y.,} are the inputs and outputs which are involved in fixed connections.

(4.22)

Obviously, the dimensions of {u.,} and {y, } are equal. The assumption that ., and Ye, of

a certain fixed connection cannot appear in another connection implies that

{te,} = [12]{3/62} (4'23)

where [I,] is square matrix with ones at the (3, j) connection entries and zero elsewhere, i.e.,
each row or column of [I] has only one non-zero entry set to one. Substituting Eq. (4.23)

in Eq. (4.22) yields the control system equation

{2} = [A{z} + [B:]{u} (4.24)
{ve} = [CH{z} + [Del{uc} ’
where {zc} = {z.}, {uc} = {ue,}, {¥c} = {ve,}, and

[A] = [A. ]+[B. |[BC., ]

[BC] = [Bel ] + [Bcz ][12][12821]

[CC] = [Ce1 ] + [Dcxz][I2][qez ]

[DC] = [Deu] + [Dexz][12] [D=21] (425)

C:’ez = [l:) 622][C82 ]

D., | = [Dezz ] [Den ]

Dezz = [I - Dezz I2]_-1

The well-posedness of the connections in Eq. (4.23) guarantees that [I — D,,, I,]~! exists.
The model structure and its parameters/matrixes in Eqs. (4.24) and (4.25) are indepen-
dent of the structural and aerodynamic variables and thus are unchanged in the design or

optimization process of the latter
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4.4 The ASE Model

The ASE model is obtained by connecting the AE model of Egs. (4.14) and (4.15) with the
control system of Eq. (4.24) through fixed and variable gain connections, as shown schemat-
ically in Figure 4.2. As in subsection 4.3.2, an input and output of one fixed connection

cannot appear in another connection.

AE Plant
{up, }; B {¥n:}
{up, }, [ é': Op ] {¥p}
y
Ipe Iy
{v. } {u}

[}

Y

A, Bc] - |

-+ c1 ucl + !
Gpe [ Uz, [C° D LY, G !

+ + i

| et |

Control System

Figure 4.2: The ASE interconnection model. Thick lines represent fixed connections.
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To perform these interconnections, the system equations (4.14), (4.15) and (4.24) are

assembled and their inputs and outputs are re-arranged as follows:

i i L[ v
é’? —_ [ AP Tp + BPI BPz 0 0 4 Up,
& 0 A [z [T 0 0 B, B, |)u |
\ uC2 ,
Yp: [ Cp, 0 ] 0 0 O 0 7 up, ) (4.26)
Yps _1C, O o | 0 0 O 0 } e |
Yo - 0 C, Ze 0 0 D, D Uc,
Yeo L 0 C, | L 0 0 Dy Dy 1\ ue,

where inputs and outputs with the subscript 1 are used in connection through the vari-
able gain matrix, while the inputs and outputs with the subscript 2 are used in the fixed
connections, performed first. The system with fixed connections closed but variable gain
connections open will be referred to as the gain-open system.

The fixed connections are specified by

v d=ln 5 (27

where [I,,c] and [Ip] are of a similar structure as [I,] of Eq. (4.23). Eq. (4.27) expresses fixed
connections between the AE and control model. Such connections within the control model
were already implemented in Eq. (4.24), while fixed connections within the AE model are
not logical and thus forbidden. (Any connections from the sensors to actuators are assumed
to be part of the control system and thus performed through the elements of the latter.)
Substituting Eq. (4.27) in Eq. (4.26) yields the gain-open vehicle equations

{2.} = [AKz.} + [Bul{w}
{w} = [Cl{zo}+[D[{u.}

e={2) w={n]} w-{r)

(4.28)

where
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—_ AP + BP‘-’ IPC DC22 ICPCP2 BP? IPC CC? — BP! BPZ’ IPC DC21 |
(4o} = [ B, L,C.. A [Bl=]"¢ "g
(4.29)
= Cp 0 | 0 0
[Cv] B [ Dclz ICPOm CCI :I [Dv] B [ 0 Dcn

It can be observed that in Eq. (4.29), direct input-to-output feed-through, i.e., non-zero
entries in [D,], can exist only between u,, and y, , namely [D,,,] connecting between internal
control elements. This result is due to the zero feed-through of the AE system discussed in
section 4.2, Eq. (4.15).

The final ASE variable gain loop is closed by relating the input vector {u, } to the output

vector {y,} via a gain matrix [G,],

{w} = [G{.} (4.30)

Up, | _ | Gpp Gpe Yo
tmp=lem & (3

Gpp represents a direct connection through a variable gain from AE system sensors and

or more specifically

actuators, while G.. are control system internal variable gains. G, and G, are variable
gains specified on the inputs and outputs, respectively, of the control system, i.e., gains on
the sensors and to the actuators.

Substituting Eq. (4.30) into Eq. (4.29) yields the closed-loop ASE equations of motion

{2.} = [A}{z.} (4.32)
where
[A,] = [A,) + [B.][G.][I — D,G,) [C] (4.33)

The inverse in Eq. (4.33) exists assuming the feedback given by Eq. (4.30) is well posed.
The special structure of the coefficient matrices in Eq. (4.29) is used to reduce the com-

putational load in constructing [4,]. In addition, in AE optimization, only elements of the
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AE model, i.e., matrices with the subscript p in Eq. (4.29), have to be recomputed, while
the rest of the terms in the [4,], [B,], [C,] and [D,] matrices are unchanged. This can also

reduce the computational load in the optimization process.

4.5 System Matrix Derivatives

The derivative of [4,] in Eq. (4.33) with respect to a structural design variable v; is

0l4)] _ 9l -1 9(C]
Ov; Oy Ov;

+ [BJ][G] [I - D,G,] (4.34)

The only terms in [A,] which are functions of the structural design variables are in [A()]

which combines the second row partitions of [A,.] and [B,.] of Eq. (4.5), namely

~

[AP) = —[M]*[AP) (4.35)

P
where
[Ja;?)] = [ Kh;; +9Ahho th + g‘,éAh;.1 th qA;u:0 ngAhq %;:—A;wz ]

The derivative of [Al(,z)] with respect to v; is

a[;g)] = ~[8]* ([DGMVL[AP] + [ [DGKVL: 0 0 0 0 [DGMVC]:|)  (4.36)

where [DGMV];, [DGKV]; and [DGMVC]; are defined in Egs. (2.7), (2.9), and (2.13), and
where use is made of the differentiation formula

oM™ i OM]
o = 1M1 ] (4.37)

The derivative of [A,] with respect to v; is all zero except for the first 2nj + n, columns in
rows np + 1 to 2ns which are given by Eq. (4.36).
The derivative of [C,] with respect to v; is zero in the cases of displacement and velocity

measurements. In the case of acceleration measurements, Eq. (4.8) yields

%%l=[é Dczfcp][cby][ﬂgfﬂ o] (4.38)
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4.6 Aeroelastic System Gain and Its Sensitivities

The aeroelastic system gain is useful in specifying the closed loop ASE system performance.
In particular, the zero-frequency (DC) gain of the AE system excluding the rigid body
modes, often referred to as the actuator effectiveness, can be used to specify low-frequency

performance. Using Eqs. (4.14) and (4.15), the actuator effectiveness is computed by

[G5(0)] = ~[Cpll 4] 7" [By] (4.39)
Its sensitivity with respect to a structural design variable v; is
01G,(0)] _ Y (A R
B'Ui - [CP] [AP] a’U-j a'l)-,' [AP] ) [BP] (440)

where the sensitivity matrices 8] A,]/0v; and 0[C}]/0v; were discussed in the previous section.
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Chapter 5

Flutter Analysis

5.1 Flutter Constraints

The flutter analysis is based on the n,o.t eigenvalues );, whose Im(};) > 0, of the closed-loop
systm matrix [4,] of Eq. (4.33). Without a control system, [A,] = [A,.] where [A,.] is the
open-loop system matrix defined in Eq. (4.5).

The flutter constraints are those specified in the standard FLUTTER discipline in AS-

TROS, namely
Y5t — ViREQ 7=12,...,nv
= —X .
g GFACT - 0 [ = 1, 2, v ooy Npoot (5 1)
where
o Re()\z)
T Im(y)

at the jth user-defined velocity associated with a Mach-density pair. The derivative of the

flutter constraint with respect to a design variable v; is

gg_ _ 1 3’)’_,'1 _ DRRV, - ’)’leIRV,‘
dv;  GFACT 8v; = Im())GFACT

(5.2)

where DRRV; and DIRV; are the derivatives of the real and imaginary parts of 9\ /0.
Derivatives are calculated for a small portion of the extracted eigenvalues which are the most
critical. The computation of 9);/0v; requires the extraction of the eigenvectors associated

with ;.
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5.2 Eigenvalue Sensitivity

The complex column (left) eigenvector {X;} and row (right) eigenvector {X;}7 associated

with ); satisfy

(14— xln) {2} = {0} (5.3)
and
{X07 ([Aulag)] = M) = {0} (54)
To compute the flutter column eigenvector efficiently, Eq. (5.3) is partitioned into
0o I 0 X3
A Az A | —N[I] X, ¢ ={0} (5.5)
A3; Az Az X3

where subscript 1 relates to the structural displacement states {f}, 2 relates to the velocity

states {£}, and 3 relates to the remaining states. The first row partition in Eq. (5.5) yields

{X1} = ,\%{Xz} (5.6)

which, when substituted in the remaining parts of Eq. (5.5), yields

A + yl;z‘—lzl Az X
~ i i - NI = 5.7
([ Agp+ 54z As ] X3 {0} (6.7)
The first term in {X,} is set to

X», = (1.0,0.0) (5.8)

The other values of {X,} and {X3}, combined in {X?}, are found by solving

(4] - M) {X} = -8} (5.9)

where [A] is the partitioned matrix in the right side of Eq. (5.7), without the first row and

first column, and {b} is the first column of the partitioned matrix (without the first term).

Eq.. (5.9) is solved by first decomposing [A] — A;[I] into

[4] - M[1] = [L][T] (5.10)
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where [L] and [U] are lower and upper triangular matrices. Forward-backward substitution
is then performed to yield {X}, which combines with Egs. (5.6) and (5.8) to the column
eigenvector {X;}.

For the computation of the flutter row eigenvector, Eq. (5.4) is partitioned into

H

The first column partition of Eq. (5.11) yields

_0 _I _0
An Az Ay | —N[I]| ={0}T (5.11)
A3y Az Ag

- 1 — _
{Xi} = X ([4a]"{X:} + [Aa]"{Xs}) (5.12)
which, when substituted in the remaining parts of Eq. (5.11), yields
— T - 1 7 -
X, Ay + 5 A Ass
> - = - — XN} =40 5.13
{ X3 } ([ A+ 5-As As 1) = {0} (5.13)
Similarly to the column-eigenvector solution, The first term in {X;} is set to

X,, = (1.0,0.0) (5.14)

and the other values of {X;} and {{X;3}, combined in {X}, can now be found by solving

{X}" (14 - M[1]) = —{B)7 (5.15)

where the left-side coefficient matrix is identical to that of Eq. (5.9) but {8} now contains
the first row of the partitioned matrix, without the first term. In order to solve Eq. (5.15)
with the same decomposition used for solving Eq. (5.9),the problem is posed as the conjugate
transpose of Eq. (5.15),

(& - %) (&} =53 (5.16)
from which {X} and then the other parts of {X;} in Egs. (5.12) and (5.14) are recovered.

The differentiation of Eq. (5.3) with respect to a design variable v; yields

(T~ ) 03+ (0 - 1) 22— g (517)
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Premultiplication of Eq. (5.17) by {X;}7 and the use of Eq. (5.4) yield

M _ N ) o e
aﬂ{:DRRV,+zDIRV,- T (5.18)

5.3 Flutter Boundary

While the optimization flutter constraints are based on the system eigenvalues at user-
defined flight conditions, the final analysis may include the comutation of the flutter velocity
at which a root branch crosses to the right side of the Laplace domain. In addition to
the n,q major velocity values (V) defined by the user for each Mach-density case, the user
defines intermediate V' values by specifying the number of equal intervals (ng.,) between two
consequtive major V values. Startig with the third V value in each Mach-density case, the
flutter velocity is calculated when a real part of a complex eigencvalue becomes possitive.
The total number of V' values for which roots are calculated in the final analysis is nvxndv+1.

The kth intermediate V between the major V,, and V,,,4; is

Vm+1 -

Vi
Ve = gm + (k- 1) (5.19)

dev

The flutter velocity and frequency, V; and wy are calculated by quadratic interpolation of
the first eigenvalue that crosses to the right side, and the associated ones in the two previous
V points. The eigenvalues that correspond to the same ”"branch” may not appear in the
same location in the vectors of eigenvalues associated with different V’s. If, for example,
Ak; is the sth eigenvalue in the vector of eigenvalues {A}; associate with Vi, A(k—1), may not
relate to the same aeroelastic branch. It is assumed, however, that the V increments are
small such that, the same-branch eigenvalue is the closest one among >\(k-1)(z‘-2) to A(k_l)(,-+2).
The flutter boundary routine finds the first eigenvalue in each branch (if any), zx + iw, that

has positive real part, and the two previous same-branch eigenvectors, zz_; + iwg.; and
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Zx—3 + wi_3. The two quadratic interpolation formula are

V = V;+Azz+ B2 (5.20)

w = wy +sz+ szz

Vi-2
|- i } 52
I Vi

-1 Zk—2 z,f_z' wy Wi_2
1 zp1 28, A, =< wr (5.22)

2
1 Zk Zj

yield the Vandermonde equations

i 1 Zk-2 Z£_2 ]
1 24 z,%_l
1 =z 22

and

which yield

Ve — Vi—2zk-12k(2k — 2k—1) — Vi-12k-22k(2k — 2—2) + Vize—22k-1(2k-1 — 21_2)
d (2 — z-1) (2 — 2h—2)(2h-1 — 252)

(5.23)

wr = e=27k-12k(2h = k1) — W1 2k-22k(2k — Zk-2) + WrZk-22k-1(2k-1 — Z4-2) (5.24)
f (Zk - Zk—l)(zk - zk—2)(zk—lzk—2) )
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Chapter 6

Control Stability Margins

This Chapter discusses the controller stability margins of the closed loop ASE system de-
scribed in Chapter 4. The analysis assumes variations in the gain matrix [G,] of Eq. (4.30)
only, applying both Single-Input-Single-Output (SISO) and Multi-Input-Multi-Output
(MIMO) techniques. The SISO stability margin discussions address the single gain un-
certainty cases. This includes descriptions of methods to calculate the appropriate SISO
transfer functions from the MIMO control system, as well as methods to calculate SISO
gain and phase margins and their sensitivities with respect to variations in structural design
variables. The SISO techniques are then further extended to treat MIMO problems, where

several controller gains can vary simultaneously.

6.1 SISO Stability Margins

The SISO analysis addresses the case of uncertainties or possible variations in one element

of the controller gain matrix [G,], e.g., Gy, ;, which takes the form

%77

Gv'- g

= C—v',,,.',.g,._j %7 (6.1)

Here, Gy, ; is the nominal values of G,, ;, while g, ; and ¢, ; are its gain and phase variations,
respectively, which determine the gain and phase margins. Their nominal values are g, ; = 1

and ¢, ; = 0. Assuming that nominally the closed loop ASE system is asymptotically stable,
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ie., [A,] of Eq. (4.33) is Hurwitz with the nominal @,,'.,J., SISO stability margins determine
the smallest variations in g, ; and @, ; that cause instability of the closed loop ASE system.
To compute these margins, appropriate SISO transfer functions have to be constructed from
the (generally) MIMO control system. Consequently, the SISO gain and phase margins and

their sensitivities to structural design variables can be computed.

6.1.1 SISO Transfer Functions from a MIMO Control System

Computation of the SISO stability margins against variations in G, ; discussed above can
be efficiently performed by opening the i-j loop of the MIMO control loop in Eq. (4.30) at
either input or output side of the gain element G, ,, resulting in a new single variable input
and a new single variable output to the system. The SISO stability margins can then be

computed from the open loop SISO transfer function between this new input and the new

output.
ri + _Aw}|[ A B, 1| {w} ¥i [ Y;
e [0., Du} = et G, —
+

ot -

Figure 6.1: SISO stability margins: control loop layout for the required
SISO transfer function.

This new SISO transfer function is computed using the “open-closed” loop system de-
picted schematically in Figure 6.1, where the elements of the new gain matrix [Gf,"j)zo] are
equal to the elements of the nominal gain matrix [G,], except for the (i, ;) element which is
set to zero and {e;} and {el} are the i-th and the j-th unit vectors. r; is the new “external”

scalar input and y; is the new input of this open-closed system.
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The MIMO loop in Fig. 6.1 is defined by
fu} = [6690] {uu} + {esdn (622
Substituting the controller Eq. (6.2) into the system Eq. (4.28), and using the relation
y; = Go,; {es} {w} (6.3)

yields the new open-closed loop system state-space equations

{d’m-‘} = [AOC]{moc}'i'{boc;}ri

y; = [COCj] {mot:} + doc_,",;r‘i (64)
where o
[A] = A+ [B] [Co]
{bo;} = [Bul{e}+ [Bv] {Dm}
ij] = Gy ,{e}F [év]
d°°1t = Gvu{ej}T {E‘Uz}
. . 6.5
[B)] = [B.J[GH=] (6.5)
[ ~"] = [D.v]—l [C.]
{D.} = [D)” DHed
D) = [1-(D.][ag]
The SISO transfer function between r; and y;-' is
Y5(8) = Toc;i(s) mi(s) (6.6)
Tocsu(s) = [coq] ['SI - [Aoc]] - {boc;} + fiocj,; (6.7)

This transfer function is used next to compute the gain and phase margins of the G, ;control

system gain, and their corresponding sensitivities to variations in the structural parameters

of the ASE system.
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6.1.2 SISO Gain Margins

Upper and lower gain margins are defined for a stable closed loop ASE system. The upper
gain margin indicates the lowest relative increase in the loop gain G, ; for which the closed
loop system is unstable. Using the notation of Eq. (6.1), the upper gain margin is the smallest
9;; > 1 that causes closed loop instability. Similarly, the lower gain margin indicates the
lowest relative decrease in G,, ;, i.e., the largest 0 < 9:,; <1, that leads to an unstable closed
loop system. According to the Nyquist stability criterion, gain margins are the reciprocals
of the open loop transfer function gain, evaluated at the phase crossover frequencies defined
as the frequencies for which the transfer function phase equals to 0°. The 0° (and not
the classical -180°) phase crossing is used because of the positive feedback assumption in
Eq. (4.30). Among all the phase crossover points, the two closest to +1 in the complex
Nyquist plane determine the upper and lower gain margins.

In the ASE context, the SISO transfer function of interest is Toc;:(s) defined in Eq. (6.7).
To compute the gain margins, it is necessary to determine the phase crossover frequencies wp.,

for which Toc;(Jwpeo) is real and positive. For that, the matrices [L] and [N] are constructed

as follows
N N O :
Z=] O, M —[oe] | =] e o | (eg
[C“j] "‘{boc,.}'r 0 Q- --ccvevnnn 0

where n, X n, is the dimension of [A,.]. The phase crossover frequencies are the imaginary

parts of the purely imaginary generalized eigenvalues of [L] and [N], i.e.
[L]{zx} = M [N]{zx}, k=1,...,n, (6.9)

and {z;} are the corresponding generalized right eigenvectors. Among all the purely imag-

inary Ax-s only the ones with real and positive Toc, ;(Ax) are relevant to finding upper and
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lower gain margins, leading to the set

' Real (Ak) =0, Imag (}\k) >0,
@ = { Imag () } (6.10)
Real (Toq; (X)) > 0, Imag (Toq;(A)) =0

By definition, the upper and lower gain margins are determined as

GM, = ! (6.11)

A{;‘,"'B {0 < Ty, (9®0) < 1}

oM, = ! (6.12)

A/{Din {1 < TOCJ.',.(](D)}

The expressions above yield the phase crossover frequencies, wj,,, and w:,co, which correspond

to the upper gain margin, GM,,, and lower gain margin, GM;, respectively. Therefore,

1

GM‘“J - Tocg',i (.7"))

(6.13)

u,l
Wpeo

and in decibels,

GM,;[dB] = 20log GM,; = —20log Toc;; (3w)

(6.14)

“’;'clo
Note: Some systems may have no upper and/or lower gain margins (often set to +oo [dB]).
In these cases, the gain margins and their corresponding sensitivities, discussed below, are

not calculated.

6.1.3 SISO Phase Margins

Upper and lower phase margins are defined for a stable closed loop ASE system. The upper
phase margin indicates the lowest additional loop phase lag for which the closed loop system
is unstable. Using the notation of Eq. (6.1), the upper phase margin is minus the largest
¢:; < 0 that causes closed loop instability. Similarly, the lower phase margin indicates the
lowest additional loop phase lead, i.e., minus the smallest ¢; ; > 0, that leads to an unstable

closed loop system. Based on the Nyquist stability criterion for positive feedback systems,
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phase margins are evaluated at the gain crossover frequencies (defined as the frequencies
for which the transfer function gain is unity) and equal to the transfer function phase at
these frequencies. Among all the gain crossover points, the two closest to 41 in the complex
Nyquist plane are used to determine the upper and lower phase margins. By convention, the
upper phase margin is positive and the lower phase margin is negative.

In the ASE context, T..;,(s) of Eq. (6.7) is used as the open loop transfer function for
phase margin calculations. The gain crossover frequencies Wgeo are found by computing the

eigenvalues of the Hamiltonian matrix [H] defined by

Ao+ (b} o) 25 (b} () /s,
[H] = . ’ Rt (6.15)

—lews] [eons] 1 - [[Aoc] + {bo } [c5] ]

I,:,Q..

O

where d;; =1 — dzc,-.» Among these eigenvalues A, i = k,...,2n, , only purely imaginary
ones for which lTocJ-,.-(Ak)' = 1 are used to determine the upper and lower phase margins,

leading to the set

@ = {Ima.g()\k) | Real () =0, Imag (%) >0, Togs(Mu)| = 1} (6.16)

The upper and lower phase margins are determined as

PM, = Min {0° < T, (o) < 180° 6.17
Lin {0° < | Tor,, (78) < 180°) (6.17)
PM; = Mas {-180° </ Toe, (33) < 0°) (6.18)

where | Toc;,(7@) is manipulated to be in the range —180° < | Toc, (@) < 180°. Note that
the above expressions yield the conventionally assumed PM, > 0 and PM; < 0. These

expressions also yield the gain crossover frequencies, w® and w!__, which correspond to the

gco gco?

upper phase margin, PM,, and lower phase margin, PM;, respectively. Therefore,

(6.19)

PM,; = {T,xj,‘(;/w) .
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or

(6.20)

PM,; = tan™? (Imag[Tocj'i(]w)])

Real[To; (yw)]

u,l
Wgco
Note: Some systems may have no upper and/or lower phase margins (often set to $o00[°}).

In these cases, the phase margins and their corresponding sensitivities, discussed below, are

not calculated.

6.1.4 Sensitivities of SISO Gain Margins

In this section the sensitivities of the upper and lower gain margins with respect to a design
variable are derived. The gain margins are computed for the controller gain G,, ; variations,
while the design variables include structural variables and the controller variable gain matrix
[G,] entries, all grouped in the vector {v}.

The sensitivity of the gain margins expressed in decibels are given by

8GM,[dB]  20/1n10 GM.,,

= 21
Bv,- GM,,,,I 8’0,‘ (6 )
where dGM,, 1/ 8v; is the regular (not in decibel) gain margin sensitivity.
The gain margin sensitivities with respect to G, ; are given simply by
OGM,;  GMy;
3, - G (6.22)
or in decibels
0GM,,[dB] 20/1n 10
: =—— 6.23
0G.,,; G, (6.23)

To compute the gain margin sensitivities with respect to the other design variables v;,

the matrix [AGMu,z] is constructed

[Aen,,| = [[Aoc] + i]jl'g T [coc,-]] (6.24)
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Note that jw pco is an eigenvalue of [AGM,,;] . The gain margin sensitivities are given by

T aAGM O4gMm,, {X}\

{Y} {X } )

T BAGM 9AGM,,
GM,,

{ry {X }

()
Real

dGM,; \
Bv,- -

(v} {x1)

Real

where {X} and {Y}T are right and left eigenvectors of [AGM“,,] given by
[AGMu,;] {X} = wil{x}

{ry [Aom.,] = st vy

and
BAGMu,l _ 1

OGM,,; (1 - docj'.,‘GMu,l)

5 {boc:} [ij]

The sensitivity A, ,/0v; is constructed using the results of Section 4.5.

6.1.5 Sensitivities of SISO Phase Margins

(6.25)

(6.26)

(6.27)

(6.28)

Upper and lower phase margin sensitivities are computed with respect to the design variable

vector {v} defined in the previous section. To compute these sensitivities, the matrix [APM“.,]

is constructed

[ APMu,z] - [[ Ao] + eJPMu,z[r:i] " {boc, } [Coa”

(6.29)

where PM,, [rad] is the phase margin expressed in radians. Note that [APM,,,,] is complex

and jw

gco is its eigenvalue.
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The phase margin sensitivities are given by

6A
{vy =5 {x}
Real {Y} {X}
50, ” = (6.30)
‘ ¥y oot ()
Real BP Mu ) [rad]
{r} {x}
where {X} and {Y}T are right and left eigenvectors of [ApMu,l] given by
[APM“J] {X} = gco {X} (631)
{Y}T [APMu.l] = gco {Y} (632)
and
O0Apum . ]e’PM“"[md]
syl Boc:} |Coc; 6.33
aPMu,l[ra'd] (eJPMu,z[rad] _ doc_.,".;)2 { '} [C 7] ( )

Again, the sensitivity 0Apa,,/0v; is constructed using the results of Section 4.5.

6.2 MIMO Stability Margins and Sensitivities

Following Ref. 14, the MIMO stability margins are defined by introducing ASE system
uncertainties at the plant input or output as described in Figure 6.2.
The input and output MIMO stability margins are defined with respect to uncertainties

(variations) in the matrices [L;] and [L,], which are assumed to be diagonal, i.e.

(L] = diag[gie™], 1=1,2,...,N (6.34)

L) = diag[gge], k=1,2,...,N, (6.35)
where N; and N, are the number of inputs and outputs, respectively, to the ASE model.
At the nominal condition, ¢} = g2 = 1 and ¢} = ¢ = 0 V Lk, ie., [L] = I

wxn; and
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G, =

Figure 6.2: MIMO stability margin evaluation setup.

[Lo] = Iy, ,y,- Sufficient conditions for a guaranteed gain margin §* and phase margin ¢* at

any input to the gain-open ASE plant are
_i\2 7iy 7412
[(1-1/8) +2(1 — cos §)/7| " < 2{I - G.R.} (6.36)

or

(-8 +28°(1 - cos )] " < 2 {I - [G, R (6.37)

where

[Pu(s)] = [CullsI = AJ) 7} [B.] +[D.]

and ¢{-} is the minimum singular value of the argument matrix evaluated at s = jw V w > 0.
Sufficient conditions for output gain and phase margins are similar to the inequalities of
Egs. (6.36) and (6.37) except of replacing the [G, P,] terms with [P,G,].

The inequalities of Egs. (6.36) and (6.37) on the ASE system minimum singular values
can serve as MIMO stability margins in the multidisciplinary optimization process. Their
sensitivities with respect to a design parameter p are computed analytically from the singular

value derivative expression
do{H}
Op

LOH
= Real (g Ep—y) (6.38)
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where u and v are, respectively, the right and left normalized singular vectors of the matrix

[H], corresponding to the minimum singular value g{H}. In the ASE MIMO case,
[H] = [1] - [Go] [[CullsT — A} [B.] +[D.]] (6.39)

and the evaluation of the derivative do{H}/0p facilitates the sensitivities of [4,], [B.], [C.)]

and [D,] which were discussed earlier in the SISO margin section.
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Chapter 7

Continuous Gust Response

The time-domain ASE model for continuous gust response analysis is is based on the ASE
model of Chapter 4, augmented by gust states and excited by a gust velocity input. The
formulation is based on the gust modeling of Ref. 5. It assumes a single gust pattern, either
vertical or lateral, represented by the spectral properties of the gust velocity amplitude.
The gusts are assumed to be spanwise uniform. Kinematic load modes and the associated
aerodynamic and inertial coefficient matrices facilitate the use of section loads as design

constraints.

7.1 Equation of Motion

The second-order time-domain equation of motion of the structure was defined in Eq. (2.23),
with the generalized external forces represented by {P,(¢)}. The external forces for stability
analysis were expressed in Section 4, where they included aerodynamic forces due to struc-
tural dynamics, and inertial and aerodynamic forces due to control-surface motion. These
loads can be considered as part of the internal dynamics of the closed-loop aeroservoelastic
system. Gust response analysis requires the addition of gust input loads. When output
section loads are required, generalized aerodynamic loads associated with kinematic load

modes are required as well.
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The generalized aerodynamic forces are defined in the frequency domain in Eq. (2.38).
The aerodynamic force coefficient (AFC) matrices, including the gust column {Qng}, are
first calculated at several user-defined tabulated reduced frequency values, k,. The tabulated
matrices are used for approximating the AFC matrix as a rational function of k in the entire
frequency domain, as described in Chapter 3. An expansion to the entire Laplace domain
is performed by replacing ik in the rational expression by the non-dimensional Laplace
variable p = sb/V, which yields Eq. (3.2). The substitution of p = sb/V in the expression
for [Qx(p)] of Eq. (3.2), and the subsequent construction of the state-space equations for
stability analysis were discussed in Chapter 4. The expanded version of Eq. (4.1), which

includes the gust related coeflicients, reads

[8:&3 ] - [QZZ ] +y [ s ] T [ i ] S+ [ o ] (ine- Y1) " 210 &

where the coeflicient matrices are column partitioned as

[ Apn ] _ [ Ann, Ane, Anc.

- ) —0,1,2), [E]=[BEx E. E
A | T | Apnt A ALG,,] (n b BI=[B d

When the design values are different than the ones for which the approximation matrices
were calculated, {Axg, } is updated by Pre-multiplying its baseline value by [¢]7, and [ALs,]
is updated by post-multiplying it by [1], similarly to the other matrix updated in Eq. (4.2).

To avoid coefficients associated with the second time derivative of the gust velocity.
Approximation constraints should be applied to the gust columns to yield {Ang,} = 0 and
{AL,} = 0. As discussed in Chapter 3, the approximation matrices [As,], [Dy] and [E]
are solved for while ignoring the section-loads data. The [Af,] and [Dy] matrices are then

solved for with a fixed [E].

The augmenting aerodynamic state vector is defined here by its Laplace transform as

{ea()} = (s~ V1R) " (IBHE) + EHEW) + lEoduo(e) s (12
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Equations (3.1), (7.1) and (7.2) add a gust related term to the generalized aerodynamic force
vector {P7(s)} of Eq. (4.4),

Bl = - ({4} + plade) wols &

Equations (2.23), (2.28), (4.4) and (7.3) yield the state-space aeroelastic equation of

motion for open-loop response analysis

{iae} = [AOC]{mae} + [Bae]{uae} + [Baw]{‘&')G} (7'4)

where {Za.}, {tac}, [Ase] and [B,] are defined in Eq. (4.5) and

w 0 0
{zbe}={ .G} [Buol = | —210 ™ {Arc,} —B U] {Ar,}
we 0 L {Ec}

where [M] defined in Eq. (4.5).
Sensor readings of the aeroelastic plant were defined in Eqgs. (4.6) to (4.9). The only
effects of the gust inputs on sensor readings are in the case of acceleration output, where the

expression for y, in Eq. (4.8) is supplemented by

Yeo = [Cacl{i6} (7.5)

where
[Cac] = —[$J[M] 7 | #{4nc} E{Ana,} |

which expands Eq. (4.9) to become

{yae} = [an]{xae} + [Dae]{uae} + [CGa]{"DG} (76)

where the only non-zero rows in [Cg,] are those associated with acceleration signals, which

are taken from [Cyg] of Eq. (7.5).
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The plant equations of motion, Eqgs. (4.14) and (4.15), become

{2p} = [A{zp} + [Bel{tp} + [Bpul{@c}
{9} = [Col{zp} + [Cral{we}

where

The vehicle equations of motion, Eq. (4.28) become

{2} = [A{z.} + [Bo{uu} + [Buul{®c}
{w} = [CHzo}+ [Dul{u.} + [Coul{wc}

where

— By — Cea
[Bow] - [ Bch-‘pCG: ] ’ [CG'U] - [ DC12ICPCG2 :I

The equation of motion of the closed-loop aeroservoelastic system is
{z2.} = [A}{zo}+[Bul{ds}
where [A,] is the closed-loop system matrix defined in Eq. (4.33) and

[Buw) = [Buw] + [B.][GW] [T — D,G,) ™ [Ca.]

(7.7)

(7.8)

(7.9)

Output parameters {yg} which are of interest for dynamic response analysis are expressed

in terms of the plant states, similarly to the sensor readings of Eq. (7.7),

{yr} = [Corl{zp} + [Coarl{ e}

where, similarly to [Cga), [Capr] = 0 except for acceleration response rows.

7.2 Gust Model

(7.10)

The description of the gust mode and the way gust column in the generalized aerodynamic

matrix is calculated, are given in the theoretical manual of the ZAERO module. We deal
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in this section with the statistical properties of the gust velocity and their realization in
state-space modeling.

It is assumed that the gusts are generated in a stationary, Gaussian, stationary random
process. A continuous atmospheric is defined by its root-mean-square (RMS) value and power
spectral density (PSD) function. RMS gust values, o,,, for aircraft design are defined by

aviation regulations. A classical formula for the gust PSD is that of Dryden,

1+ 3(wr,)
By (W) = 04Ty
) [1 + (w'rg)2]

where 7, = Ly/V where L, is the scale of turbulence typically 2500 ft for aircraft design.

(7.11)

This formula is consistent with the relation between RMS value and PSD function in the
theory of stochastic processes,

1 fe 1 fe
to= g [ Bue(@)do == [T @ (w)de (7.12)

o,

The expression of Dryden appears some time with a 7 in the denominator, which agrees

with the formula traditionally used by aeroelasticians,
o2 = /0 &, (w)dw (7.13)

A more modern PSD formula, but somewhat more complicated, is that of Von Karman,

1+ &(1.339w7,)?
Pye(w) = o Tg . 2g 11/6
|1+ (1.339w7,)?]

(7.14)

wa

To facilitate the use of modern algebraic tools for calculating the structural response to -
continuous gust excitation, we want to describe the gust-response process by a state-space
model excited by white noise. For this purpose we need to define a gust filter that, when
excited by white noise, produces the gust PSD function. The transfer function of a filter

that produces Dryden’s formula is

-1/2 -3/2
T(s)= Yol _ g VT s+ i (7.15)
ZO Y Py

66



where w is a white-noise parameter with ®,, = 1. A state-space realization of this filter would
result with direct white-noise excitation of the aircraft dynamics, and hence non-converged

RMS acceleration response. To avoid that, we add a low-pass filter which modifies Ty(s) to

be

Ty(s) = —=Ty(s) (7.16)

s+

A state-space realization of Ty(s) is

{2} = [A{zs} +{Bs}w

{#g} = [Cgl{z,} (7.17)
where
0 1 0 0
[4] = I: _T;z -2/t @ ] {B;} = { 0 }
0 0 -—-a Cwg

0 = [ T ]

g
-—\/3-7';5/2 (1- 2\/§)T;3/2 \/gafrg‘l/2
Since Von Karman’s PSD, Eq. (7.14), is a non-rational function of w, it can not be

modeled exactly by a transfer function. Reference 16 suggested the 3rd order filter
(1 + 2.6187,s)(1 + 0.12987,s)

Ts = Twev/Ta (T 15,0837, )(1 + 0.8237,5)(1 + 0.08987,5) (7.18)
which yields good fit in the range 0 < 7,w < 20. Hoblit!'? suggested
Tg = Uwaﬁ X
(1 +2.1877,5)(1 + 0.18337,3)(1 + 0.0217,s) (7.19)

(14 1.3397,8)(1 + 1.1187,s)(1 + 0.127774s)(1 + 0.01467,s)
which is good for 0 < 7w < 200. Both approximations of Von Karman’s PSD function
require additional low-pass filter to yield a state-space realization without an output noise
term, as in Eq. (7.17). With the low-pass filter, Eq. (7.18) yields a 4-state filter, and
Eq. (7.19) yields a 5-state one.
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7.3 Gust Response Analysis

Augmentation of the aeroservoelastic equation (7.9) by the gust filter, Eq. (7.17), yields

{#1} = [Ail{z} + {Bi}w (7.20)

where

e ={n) =[] ma-{g)

Gust response parameters expressed by Eq. (7.10) become

{n1} = [Ci]{z:1} (7.21)

where
[C1] = | [Cor] [CaarllCy] ]

The response parameters include discrete structural response and integrated section loads.
The discrete parameters are displacements, velocities and accelerations that were formulated
in Eqgs. (4.6) to (4.8) and (7.5). Section loads can also be expresses in the form of Eq. (7.21).

Equations (2.40, 7.1, 7.2, 7.17) yield the time-domain aerodynamic loads

{FE} =
- Q[ Arh, $Arn, Dp Ar, LAL, LAr, 0 LA6,C, #ALe, Cy ] {z1}

SEPLEVIRYTS! (.22

where {£} can be expressed in terms of {z1} by using the associated row partition in
Eq.(7.20).

Rigid-body displacement modes with no aerodynamic stiffness (in X, Y, Z and 6,) cause

zero roots. The rows and columns associated with the deflection states of these modes should

be removed to avoid singularity in the solution of the Lyapunov equations given below. We
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assume now that the first state in {z,} after this removal are 6§, in the symmetric case and
6, in the anti-symmetric case. Other rigid-body motion modes that have a zero eigenvalue
are the symmetric one with 8, = Z /V and the antisymmetric 8, = -y /V. Such singularity
is eliminated by calculia,ting the associated eigenvector, creating a transformation matrix [T']
in which the first column of a unit matrix is replaced by the eigenvector, and performing the

transformation
{22} = [T {21} (7.23)

which yields

{g} = [A{z}+{Bu}w
{v} = [CH=} (7.24)

it

where {z} is {z;} with the first term truncated, [4] is [A2] = [T]7}[A4;][T] with the first row
and the first column truncated, [B,] is [Bzw] = [T'][B1.] with the first row truncated, and
[C] is [Cy] = [C1][T] with the first column truncated.

A state covariance matrix [X] is defined by the expected value

[X] = E [{z}{=}"] | (7.25)

When w of Eq. (7.20) represents a unit-intensity white-noise process, [X] satisfies the Lya-
punov equation

[A11X] + [X][A]" = ~{BuH{B.}" (7.26)

Efficient solution is obtained via Schur decomposition [A] = [U][T][U]? where [U] is a unitary
matrix, [U][U])T = [I], and [T] is an upper triangular matrix. A unique solution for [X] is

obtained when [A] has no roots with real part equals zero. The output covariance matrix is

related to [X] by

[¥] = B [{y}{y}"] = E [[CH{=H=}"[CT"] = [ClIX)[CI (7.27)
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The diagonal of [Y] contains the mean-square output response
o2 = [GIIXIIC,T (7.28)

where [C,] is a row in [C] of Eq. (7.24)

7.4 Sensitivity Analysis

The derivatives of gust response parameters with respect to the design variables are based
on the sensitivity of the [4,] and [Cy] in Eq. (7.20) and (7.21). These are transformed to
the derivatives of [A] and [C] in the same way [A4;] and [C}] are transformed into [4] and
[C] in Section 7.5. The derivatives of [A,] are based on the derivatives of [A] discussed in
Section 4.5, the derivatives of [B,,,] which are non zero only with acceleration sensors. The
derivatives of [4,] and [C,] and {By.,} are zero. The derivatives of [C}] are non zero only
when accelerations are involved, which happens in acceleration and section-loads responses.

The differentiation of Eq. (7.28) with respect to a design variable v; yields

o, )

_a_v_;ay = [Cy] 6'01'

)

Xl +25

[CIX]C)” (7.29)

The derivatives of [X] are obtained from the differentiation of Eq. (7.26), which yields the

Lyapunov equation

S X1+ - DXIAT = — 210X - () 2 (7.30

[A]

which is solved for 9[X]/0v;, which is then substituted in Eq. (7.26) for the derivatives of
the mean-square responses. The Schur decomposition of [A] can be used for all responses

and their sensitivity derivatives.
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